Transform text descriptions into complete database tables instantly with AI Table Maker. Our AI understands your requirements and generates optimized table structures with proper relationships, constraints, and indexes.
How It Works
Describe Your Tables
Example:
"Create a blog system with users, posts, and comments. Users can write multiple posts, and each post can have many comments."
Get Complete Schema
CREATE TABLE users (
user_id BIGINT PRIMARY KEY AUTO_INCREMENT,
username VARCHAR(50) UNIQUE NOT NULL,
email VARCHAR(255) UNIQUE NOT NULL,
password_hash VARCHAR(255) NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
INDEX idx_email (email),
INDEX idx_username (username)
);
CREATE TABLE posts (
post_id BIGINT PRIMARY KEY AUTO_INCREMENT,
user_id BIGINT NOT NULL,
title VARCHAR(255) NOT NULL,
content TEXT,
status ENUM('draft', 'published', 'archived') DEFAULT 'draft',
published_at TIMESTAMP NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES users(user_id),
INDEX idx_user_status (user_id, status),
INDEX idx_published (published_at)
);
CREATE TABLE comments (
comment_id BIGINT PRIMARY KEY AUTO_INCREMENT,
post_id BIGINT NOT NULL,
user_id BIGINT NOT NULL,
content TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
FOREIGN KEY (post_id) REFERENCES posts(post_id),
FOREIGN KEY (user_id) REFERENCES users(user_id),
INDEX idx_post_user (post_id, user_id)
)
For more advanced schema designs, visit the AI SQL Query Generator.
Key Features
1. Smart Schema Design
Appropriate data types
Proper relationships
Necessary constraints
Optimized indexes
2. Multiple Database Support
MySQL
PostgreSQL
SQL Server
Oracle
SQLite
3. Advanced Features
Automatic indexing
Constraint generation
Relationship mapping
Performance optimization
Use the AI SQL Syntax Checker to validate and refine your schemas.
Common Use Cases
1. E-commerce System
Natural Language:
"Create an online store with products, categories, customers, and orders"
CREATE TABLE categories (
category_id BIGINT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
description TEXT,
parent_id BIGINT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (parent_id) REFERENCES categories(category_id),
INDEX idx_parent (parent_id)
);
CREATE TABLE products (
product_id BIGINT PRIMARY KEY AUTO_INCREMENT,
category_id BIGINT NOT NULL,
name VARCHAR(255) NOT NULL,
description TEXT,
price DECIMAL(10,2) NOT NULL,
stock_level INT NOT NULL DEFAULT 0,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (category_id) REFERENCES categories(category_id),
INDEX idx_category_price (category_id, price)
);
2. Task Management System
Natural Language:
"Design tables for a project management tool with tasks, projects, and team members"
CREATE TABLE projects (
project_id BIGINT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
description TEXT,
start_date DATE,
end_date DATE,
status ENUM('planning', 'active', 'completed', 'on-hold') DEFAULT 'planning',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
INDEX idx_status_dates (status, start_date, end_date)
);
Best Practices
Table Design
Use appropriate types
Plan relationships
Consider constraints
Think about scaling
Data Integrity
Add foreign keys
Set constraints
Handle NULL values
Validate input
Performance
Plan indexes
Optimize types
Consider volume
Think about queries
Learn more about database optimization with the AI SQL Optimizer.
FAQs
Q: Can it handle complex relationships?
A: Yes, including one-to-many, many-to-many, and self-referential relationships.
Q: Does it support indexes?
A: Yes, it automatically suggests and creates optimal indexes based on expected usage.
Q: What databases does it support?
A: MySQL, PostgreSQL, SQL Server, Oracle, SQLite, and more.
Start creating efficient and scalable database tables today with AI Table Maker.